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A continuous time discrete state stochastic kinetic approach is used to study various chiral autocatalytic models
in which the possibility of total asymmetric synthesis arises. It is shown that this approach is superior to the
deterministic approaches used earlier and is able to interpret many aspects of chiral autocatalysis. First-order
autocatalysis, independently of further kinetic details of the system, leads to a unique final statistical distribution
of enantiomers. Higher order autocatalysis, on the other hand, leads to a final state where one of the enantiomers
is in overwhelming excess over the other. Criteria are postulated to differentiate between inherently stochastic
phenomena in chiral autocatalytic reactions and irreproducibility because of insufficient control of external
factors.

Introduction The mathematics of the Frank model, which was originally

Asymmetric autocatalysis is often implicated in theoretical Introduced for an open system but is also useful in an isolated
interpretations of the emergence of homochirality in the ©ON€ contqmed an assumpt_|on that is kinetically rather dgb|ous:
originally racemic environment of Earth and is assumed to have the formation of one enantiomer should slow the formation of
played an important role in the chemical evolution that preceded the other one in a manner that is inversely proportional to the
the biological evolutiord: 7 This interpretation is certainly very ~ concentration of the first enantiomein addition to being
attractive because, unlike all the alternatives suggested thus farmathematically meaningless for initial conditions where no
asymmetric autocatalysis can be modeled without assuming anychiral product is present, this1-order inhibition kinetics can
unknown external factors. In 1953, Frank proposed a simple ONly arise in a limited concentration range and through a
model of chiral autocatalysis and showed that it leads to complicated mechanism; therefore the model would probably
amplification of very small initial enantiomeric exces$e&his be deemed unreasonable if not practically impossible by many
model proved that random formation of a nonracemic mixture €xperimental kineticists. Later theoretical work?>-2¢ on chiral
of enantiomers is possible in the absence of any initial autocatalysis showed that this step is not necessary for chiral
asymmetric external effects because very small fluctuations areamplification: when the order of reaction is higher than 1 for
naturally present in any reaction system. Experimental examplesthe autocatalytic species, the resulting system will amplify small
of this phenomenon, often called absolute asymmetric synthesis,initial enantiomeric excesses even without any inhibition
have been reported during the past de@adfdlt should be noted ~ Steps’™"?2 These improved attempts still used a deterministic
that separation of different enantiomers through crystallization, approach to chemical kinetics and relied on fluctuations at an
which has been known since the discovery of chirdfitgan initial stage of reaction to interpret total asymmetric synthesis.
be considered as some sort of heterogeneous version of chiraflthough this is a perfectly justifiable assumption and a sound
autocatalysis to form solid$,2° although this process does not qualitative interpretation, the method is unable to give quantita-
involve chemical reactions. The parity-violating electroweak tive predictions for the statistical distribution of enantiomers in
interaction has also been considered as a possible origin ofthe final mixture because of the difficulties associated with
homochirality? However, the energy differences between describing the initial fluctuations. A recent attempt tried to
enantiomers are so small that they alone cannot interpret anyintroduce a stochastic element to the models by assuming
observable symmetry breaking. random fluctuations in the values of rate const&ttdowever,

There are two conceptually different ways of interpreting the kinetic description of the system used the deterministic
absolute asymmetric synthesis. In the first type, spontaneousequations and was unsuitable to give predictions for the final
generation of chirality occurs in an open system with continuous distribution.
inflow and outflow of substances, the chiral state is a sort of  |n a previous recent work of the present author, the continuous
steady state and the phenomenon itself is the manifestation oftime discrete state stochastic kinetic approach was used to study
dissipative structuré® In models assuming isolated systems, a particular very simple chiral autocatalytic model with first-
however, the spontaneously generated enantiomeric excess is @rder autocatalysi. It was clearly shown that the method can
transient state and can only occur before the final thermo- be used to calculate theoretical final distributions, and an

dynamic equilibrium is reached*® The model used in this  example was given where efficient first-order autocatalysis led
work assumes isolated systems and therefore falls into theto total asymmetric synthesis.

second type. In the present paper, a detailed stochastic kinetic analysis of

t E-mail: lenteg@delfin.unideb.hu. Tel- 36 52 512-900/22373. Fax: ~ Several different classes of chiral autocatalytic models are carried
+ 36 52 489-667. out and the theoretical distributions obtained are compared with
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experimental observations. Emphasis is also given to finding dependent ora. It should be noted that eqs 1 and 2 are also
methods to decide whether a set of experimental results indeedvalid if the rate actually depends on additional reagents and
shows the inherently stochastic nature of chiral autocatalysis catalysts because functioggndh only give the rate in a single
or simply exhibits irreproducibility because of an uncontrolled kinetic run and may be different for different initial conditions,
external factor. Only the results are given in the text of the paper, especially for different initial concentration(s) of reagent(s) and/
the mathematical proofs are deposited in the Supporting or catalyst(sf° In this sense, eqs 1 and 2 are rather different

Information. from the usual deterministic rate equations of chemical kinetics.
It should be noted that the model used in the only previous
Results and Discussion work using CDS approach to chiral autocatalysis was the

simplest special case of this model witfa) = «,a and
h(a,r) = «car.?®

Initially (t = 0), the number of A molecules presentighe
number of Bk and Bs molecules present is 0. Conservation of
mass ensures that giving only the number of 81d Bs
molecules is sufficient to identify any possible state of the
system unambiguously:r,6) will denote a state where the
number B: molecules is exactly, the number of B molecules
is exactlys, and consequently, the number of A molecules is

Stochastic Approach to Chemical Kinetics. The usual
deterministic approach to chemical kinetics is based on using
continuous concentratieftime functions. Despite being in
obvious contrast with the particle-based, noncontinuous view
of matter, this approach is satisfactory for the overwhelming
majority of problems because the number particles is large.
Under certain conditions, especially when the number of
particles is low, the deterministic approach to kinetics is
insufficient. Several different mathematical approaches have
been developed under the name of stochastic kin&ighe exactlya=n—r —s. Later, the total number of B molecules,
continuous time discrete state (CDS) stochastic approach is® = + =1 — a will also be used. LeP(r,s) denote the
probably closest to the accepted particle-based view of matter, Probability that stgter(s) occurs ata certain ime |nstanFrpm
The mathematics of this approach has been developed irfletail (€ rate expressions given in egs2 the (Kolmogorov-like)
and only a very brief summary is given here. dlfferqntlal equations for the time dependenceP@f,s,t) can

In the CDS approach, a state of the system at a given time P& Written
instance is identified by giving the numbers of each particle dP(r,st)
present. A differential equation for the probability distribution g — —19(8) + h(ar) + h(as}P(r.st) +
fgnctlon pf every ;tate is sgt based on the. klne.tlc _scheme. These {0.5g(a+1) + h(a+1r—1)} P(r—1st) +
differential equations are linear and can in principle be solved
analytically, but this is often extremely difficult to handle {0.59(a+1) + h(at+1,s-1)} P(rs—11) (3)
because the number of possible states and differential equations-orr = 0 or s = 0, the second or third additive term on the
is too large. It should be noted that the CDS approach is superiorright should be deleted, respectively. The initial state (0,0) is
to the usual deterministic approach in a sense that it incorporatescertain at = 0; thereforeP(0,0,0)= 1, andP(r,s,0) = 0 holds
the particulate nature of matter without making any assumptions for every other state. In agreement with the general remarks
not present in the deterministic appro&Hn theory, every about the CDS approach, eq 3 describes a set okqib+ 1)
conclusion drawn with the deterministic approach can be reachedx (n + 2) linear differential equations.
as a limiting case of the CDS approach for very high particle  Final Distribution. The distribution of i and Bs molecules
numbers. It is in fact surprising that the CDS approach has notin the final state (i.e., where + s = n) is probably the most
been used extensively to interpret chiral autocatalysis, especiallyimportant feature of a chiral autocatalytic system and can be
because the use of an early, but mathematically sound, versioncalculated without determining ever,s;t) function. LetQ(r,s)
of this approach for autocatalytic reactions was reported by denote the probability that the system goes through stade (
Delbrick as early as 194%. Other applications of stochastic  at any time during the proces®(0,0)= 1 holds because (0,0)
kinetics have been developéti?® e.g., it was used to interpret  is the certain initial state. It can be shown tigais related to
single-enzyme catalys?4:38 P through the following equation:

General Model of Homogeneous Chiral Autocatalysisln -
this paper, a general chemical model is studied in which the Q(r.S) = limP(r,st) + Jo (9@ +h@ar) +
nonchiral precursor molecule A is transformed to a chiral
product B, F?Jsually using some sort of reagent(s) and/or catalyst- h(as)} P(r.sp dt (4)
(s). The enantiomers of B aresBnd Bs. Homogeneous chiral  After defining {(i,j) = h(i,j)/g(i), a recursive equation can be
autocatalysis is represented by two parallel reactions and rategiven for Q(r,s):

expressions: 0.5+ ¢(at+1lr—1)

A—B, QS = QUL v ir—1) + catiy

0.5+ ¢(at+1ls-1)
v, = 0.59(a) + h(a,r) (1) Q(r,s—1) 1+ fatin) + fatlo1) (5)
A —Bg This recursive definition shows that the final distribution only
depends on the functioi(i,j) and makes it possible to compute
v, = 0.59(a) + h(a,s) 2 the values ofQ for relatively low values of ands. Q(r,s) =
Q(sr) also follows from eq 5; therefore the final distribution
In these equations, denotes the number of A moleculeshe must be symmetric. In the next sections, considerations will be
number of B molecules, and the number of B molecules presented for a few particular forms ofi,j).
present. The two mathematical equations are rate expressions First-Order Autocatalysis. The term first-order chiral
that give the “stochastic rate of reaction” for a given set of initial autocatalysis is used here in a rather general sense, meaning
concentrations, or molecule numbers. In the rate expressionsithat the ratio of the catalytic and noncatalytic rates is directly
function g(a) represents the uncatalytic pathway and it is only proportional to the number of product molecules, igi.j) =
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h(i,j)/g(i) = aj irrespective of the value df In this case, the convergence to the unique final distribution, unlike for first-
recursive definition given in eq 8 reduces to a simple form  order autocatalysis, may not be very fast. Practically meaningful
values off andn could lead to cases when the distribution does

Qlr9 = Q(r—ls)o'5+ a(r—1) o 5_1]0-5"‘ a(s—1) not approach this final limit and numerical calculations are
' 14 a(b—1) ' 1+ a(b—1) necessary. This is not easy because no explicit formula could
(6) be given forQ(r,s). A method for the numerical calculation of

the cumulative distribution function will be given here. First,
This is the same recursive definition as derived from the very the appropriate values @)(r,s) are calculated for a relatively
simple CDS model where the specific functiag) = «,a and small value ofby, e.g., 1000 or 10000 using eq 5. The
h(ar) = kcar were used?® Mathematical induction can be used  cumulative distribution function is calculated for this sniafl
to prove that the explicit form for the values Qfis

r—1 s—1
0.5+ aj)| |(0.5+ qj)
Q9 = (b)'r‘l 1

r r+s—

r r
F(b—) =) Q(i,by—1) (11)

0,

. (7) Using the molar fraction at this point,; = i/by, the expectation

14 i for the final molar fraction is calculated using the following
rl ( o) differential equation:
=

A continuous probability functionf) can also be obtained for d_xf = 0.5+ &(n—br) __%
very large values of using the molar fraction of gin the do  [1+&(n—br)+E(n—bb-r))(b+1) b+1
final mixture §& = r/n).

(12)

For every initial value ofx;, numerical integration of eq 12

fix)= lim nQr,s = between the Iimit_i)o an_d n giv_es a final value for the molar
n—eo%=r/n fraction,xx ;. The final distribution is given bf(xx ;). It should
r 1 be noted that this method of calculation is essentially equivalent
Q. to a mixed stochastic-deterministic appro&&tvhere stochastic

Xr(1/2a)71(1 —X )(1/20.)*1 (8) k

1 1 T equations are used for low numbers of product molecules smaller

(?x) (ﬁ) thanbo, whereas the deterministic approach is used for product
numbers higher thaho.

wherel is the gamma function. The derivation presented here  Time Dependence and Transient Probabilitiesln addition

clearly shows that this final distribution is valid for every case to the random distribution of enantiomers, chiral autocatalytic

involving first-order autocatalysis irrespective of the actual systems should show a number of further stochastic phenomena

kinetic scheme. In other words, the statistical distribution shown because of the autocatalytic nature of the reaction. As shown

in eq 8 is general for first-order autocatalysis. The convergence by the mathematical analysis of nonchiral autocatafsi¥hese

to the continuous distribution is quite fast and eq 8 can be usedstochastic phenomena include random fluctuations in the

for n > 1000 unlesso is so low that no experimentally  reaction time and depend on the overall volume. To study these

detectable enantiomeric excess forms. effects, the calculation of thE(r,s;t) transient probabilities is
Higher-Order Autocatalysis. Higher-order autocatalysis can  necessary. Mathematical treatment is only given here for the
be represented generally B§i,j) = h(i,j)/g(i) = Bj. Obviously, relatively simple case of first-order catalysis. First, it is assumed
& = 1 is the special case of first-order autocatalysis already P(r,st) is related toQ(r,s) by P(r,st) = Q(r,s) R(a,t). Because
dealt with,& > 1 is higher-order autocatalysis, agd= 2 is Q(r,9) is independent of time, eq 3 takes the following form:

second-order autocatalysis. The recursive definition is not easily dR@)
transformed to an explicit form for higher-order autocatalysis, at —
but the probability of getting one enantiomer only is easily Qrs) dt {o(@) + h(ar) + h(a.9)}Q(rs) Ray +

given: {0.59(a+1) + h(a+1,r—1)}Q(r—1,5) R(a+1t) +
(-1 {0.59(a+1) + h(a+1,5—1)}Q(r,s—1) R(a+1t) (13)
(0.5+ fj g) For first-order autocatalysib(a,r) = arg(a) and similarly,h(a,s)
Q(r,0)= = 9) = asg@). Combining this with egs 6 and 13 gives
r—1
Q(l +Bi°) dRéf"t) = —g(a){1 + a(n-a)}R@t +

atl)}{1+ a(n—a—1)} R@@at+lyt) (14
For& > 1, it can be shown that o X o B R( ) (14)

. . Equation 14 is exactly the CDS stochastic description of the
f(0) =f(1) = limkQ(k,0) = IMkQ(OK) =< (10) autocatalytic reaction A~ B without considering the enanti-
omers of B. This shows that the “chiral” and the “autocatalytic”
It follows that the final distribution for higher order autocatalysis part of the model can be separated for first-order chiral
and very large initial numbers of A is one where one of the autocatalysis. The same is not generally true for higher-order
enantiomers is in overwhelming excess over the other. This is autocatalysis.
in agreement with the prediction of the deterministic approach  Comparison with Experimental Data. As experimental
that higher-order autocatalysis amplifies a small initial enan- examples are known for absolute asymmetric syntié€des13
tiomeric exces§. 722 However, it would be premature to it is quite natural to ask how well the models considered in this
conclude that higher-order autocatalysis necessarily leads to thepaper interpret the actual findings. A major question arises
formation enantiomeric excesses close to 100% because thébefore any comparison can be made: the CDS models show
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Figure 1. Experimental and fitted cumulative distribution functions
for the random generation of enantiomers in the reaction producing
[CoBr(NHs)(en)]?". Solid line: normal distribution. Dashed line: first-

order autocatalysis. Dotted line: second-order autocatalysis. As ex-

plained in the text, the three lines are very close to each other.
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Figure 2. Experimental and fitted cumulative distribution functions

for the random generation of enantiomers in the reaction producing

the chiral pyrimidyl alkanol. Solid line: second-order autocatalysis.

Dotted line: first-order autocatalysis.

mental distribution and the two fitted theoretical curves are very
close to a normal distributioro(= 0.052, solid line in Figure

025 1.00

that some variables in chiral autocatalytic reactions should show 1). This can be rationalized by noting that the enantiomeric
rather substantial random variations because of the inherentexcesses measured in this reaction are rather small and the
stochastic nature of the process. However, such random varia-distribution is narrowly centered around the racemic mixture.

tions in the results of experiments are routinely attributed to
irreproducibility caused by important but uncontrolled external

Thus, it does not seem to be unreasonable to find that these
small fluctuations adhere to normal distribution.

factors. Therefore, a method should be developed to differentiate  The second known example is more interesting because larger
between random fluctuations arising from the inherent stochastic enantiomeric excesses were formed. The chemical reaction is

nature of a process and irreproducibility. Specifically, for chiral

the formation of a chiral pyrimidyl alkanol in the reaction

autocatalysis, there are at least four criteria the experimentalbetween pyrimidine-5-carbaldehyde and diisopropyl2#ié.

results can be tested against:
1. The chiral autocatalytic nature of the reaction should be

Random generation of optical activity was reported in this
reaction by two different publicatio¥s!® In the first work!?

demonstrated by experiments where one of the pure enantiomershe final distribution was obviously not symmetric and the
of the product is deliberately added before the reaction. Theseauthors concluded that low levels of some uncontrolled chiral
experiments should show shorter reaction times and increasedmpurity (most probably from the solvent) interfered with the

excess of the enantiomer used for induction.
2. The experiment without any chiral inductor should be
repeated several (preferabby50) times to show that the

measurements. The second set of Hagave a symmetric
distribution fi = 3.0 x 10?°, 37 experiments) as evidenced in
this work (see Supporting Information) by Wilcoxon'’s rank sum

enantiomeric excesses are formed in a random fashion. Thetest*? The markers in Figure 2 show the measured cumulative

distribution obtained in these measurements should be sym-

distribution, the solid line shows the best fit to a distribution

metric. It has been suggested that very low levels of uncontrolled calculated assuming second-order autocatalysis=(3.8 x
chiral (e.g., bacterial) contaminants may cause the formation 10-2?), the dotted line represents the best fit to first-order

of seemingly random enantiomeric excesgésHowever, when
a symmetric final distribution is obtained experimentally, this
explanation can be ruled out practically. Wilcoxon’s rank sum

autocatalysisq = 1.16). Graphically, second-order autocatalysis
gives a slightly better fit. The goodness of fit was further studied
by statistical tests. The Kolmogoressmirnov test® showed

test? can be used to decide whether the distribution is symmetric that both fits are acceptable at the 95% confidence level (see

or not: the molar fractiong andxs (=1 — X;) must have the
same statistical distributions for a symmetric case.

3. Random fluctuations should be seen in the kinetics of the
reaction.

4. The distribution of final molar fractions and reaction times
should be dependent on the overall volume even if the very
same initial concentrations are used. As pointed out eaflier,
the value ofu in first-order autocatalysis depends on the volume
and so doeg for higher-order autocatalysis.

Supporting Information). Using the test? for the same purpose

was probably more informative. In the present example, discrete
experimental points and a continuous distribution are compared
and it is necessary to form classes containing at least 10
experimental points. A maximum of 3 such classes can be
formed from the 37 data points measured, but the formation of
classes is rather arbitrary. To avoid this arbitrary classification,
the test was performed with several different sets of classes.
Only 2 classes were formed in each case, the first containing

In the remaining part of this paper, the assumed experimentalevery point for whichx. is smaller than a predeterminegh,

examples will be tested on the basis of these criteria.

The first exampl® is the preparation of a chiral cobalt(lll)
complex,cis-[CoBr(NHz)(en)]?" from the reaction of trinuclear
mixed valence [Co(kD),{ (OH)Co(en}}2]*" with NH4Br in
aqueous solutionn(= 6.0 x 10?9, 20 experiments). The

value, the second containing all the rest of the points. The values
of 42 are then calculated for a range of meaningdi values.
Test results are shown in Figure 3 for first-order and second-
order autocatalysis. The criticgf values for this problem are
2.71, 3.84, and 5.02 at 90, 95, and 97.5% confidence levels. It

measurements gave the cumulative distribution shown by theis seen that first-order autocatalysis is rejected at 90 and 95%

markers in Figure 1. Wilcoxon’s rank sum t&sshowed that
the distribution is indeed symmetric (see Supporting Informa-
tion). Both first-order ¢ = 0.0060, dashed line) and second-
order autocatalysisf(= 5.5 x 10724, dotted line) gave an
excellent fit to the experimental points. Actually, the experi-

confidence levels ik, is close 0.22. In contrast, second-order
autocatalysis is never rejected. This again shows that second-
order autocatalysis fits the experimental points slightly better.
Unfortunately, no direct kinetic data have been published for
the two asymmetric reactioHs!?-13 that could be compared
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with criterion 4. Similar stochastic phenomena were also
observed in the kinetics of the chlorite iethiosulfate ion
systenti2

Conclusion

This paper proves that the stochastic kinetic approach, and
the CDS in particular, are suitable to interpret many aspects of
chiral autocatalysis and also provide a method to differentiate
between inherently stochastic phenomena and irreproducibility
because of insufficient control of external factors. It is possible
that researchers have actually encountered many more reactions
with total asymmetric synthesis than the two reported in the

Xim literature, but the stochastic nature of the processes was mistaken
Figure 3. Results of they? test for the random generation of for irreproducibility. These two known examples of total
enantiomers in the reaction producing the chiral pyrimidyl alkanol. asymmetric synthesis seem to be far away from the biologically
Large diamonds: second-order autocatalysis. Small squares: first-ordeimportant chiral molecules. It would be rather interesting to find

autocatalysis. reactions in which amino acids or carbohydrates are prepared
100 in a chiral autocatalytic fashion. In fact, an example is already
£ known where amino acid complexes of a metal ion are
asymmetric catalysts in the formation of amino adiialthough
0.751 this falls short of chiral autocatalysis.
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