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A continuous time discrete state stochastic kinetic approach is used to study various chiral autocatalytic models
in which the possibility of total asymmetric synthesis arises. It is shown that this approach is superior to the
deterministic approaches used earlier and is able to interpret many aspects of chiral autocatalysis. First-order
autocatalysis, independently of further kinetic details of the system, leads to a unique final statistical distribution
of enantiomers. Higher order autocatalysis, on the other hand, leads to a final state where one of the enantiomers
is in overwhelming excess over the other. Criteria are postulated to differentiate between inherently stochastic
phenomena in chiral autocatalytic reactions and irreproducibility because of insufficient control of external
factors.

Introduction

Asymmetric autocatalysis is often implicated in theoretical
interpretations of the emergence of homochirality in the
originally racemic environment of Earth and is assumed to have
played an important role in the chemical evolution that preceded
the biological evolution.1-7 This interpretation is certainly very
attractive because, unlike all the alternatives suggested thus far,
asymmetric autocatalysis can be modeled without assuming any
unknown external factors. In 1953, Frank proposed a simple
model of chiral autocatalysis and showed that it leads to
amplification of very small initial enantiomeric excesses.8 This
model proved that random formation of a nonracemic mixture
of enantiomers is possible in the absence of any initial
asymmetric external effects because very small fluctuations are
naturally present in any reaction system. Experimental examples
of this phenomenon, often called absolute asymmetric synthesis,
have been reported during the past decade.9-16 It should be noted
that separation of different enantiomers through crystallization,
which has been known since the discovery of chirality,17 can
be considered as some sort of heterogeneous version of chiral
autocatalysis to form solids,18-20 although this process does not
involve chemical reactions. The parity-violating electroweak
interaction has also been considered as a possible origin of
homochirality.21 However, the energy differences between
enantiomers are so small that they alone cannot interpret any
observable symmetry breaking.

There are two conceptually different ways of interpreting
absolute asymmetric synthesis. In the first type, spontaneous
generation of chirality occurs in an open system with continuous
inflow and outflow of substances, the chiral state is a sort of
steady state and the phenomenon itself is the manifestation of
dissipative structure.2,8 In models assuming isolated systems,
however, the spontaneously generated enantiomeric excess is a
transient state and can only occur before the final thermo-
dynamic equilibrium is reached.12-16 The model used in this
work assumes isolated systems and therefore falls into the
second type.

The mathematics of the Frank model, which was originally
introduced for an open system but is also useful in an isolated
one, contained an assumption that is kinetically rather dubious:
the formation of one enantiomer should slow the formation of
the other one in a manner that is inversely proportional to the
concentration of the first enantiomer.8 In addition to being
mathematically meaningless for initial conditions where no
chiral product is present, this-1-order inhibition kinetics can
only arise in a limited concentration range and through a
complicated mechanism; therefore the model would probably
be deemed unreasonable if not practically impossible by many
experimental kineticists. Later theoretical work5-7,22-28 on chiral
autocatalysis showed that this step is not necessary for chiral
amplification: when the order of reaction is higher than 1 for
the autocatalytic species, the resulting system will amplify small
initial enantiomeric excesses even without any inhibition
steps.6-7,22 These improved attempts still used a deterministic
approach to chemical kinetics and relied on fluctuations at an
initial stage of reaction to interpret total asymmetric synthesis.
Although this is a perfectly justifiable assumption and a sound
qualitative interpretation, the method is unable to give quantita-
tive predictions for the statistical distribution of enantiomers in
the final mixture because of the difficulties associated with
describing the initial fluctuations. A recent attempt tried to
introduce a stochastic element to the models by assuming
random fluctuations in the values of rate constants.24 However,
the kinetic description of the system used the deterministic
equations and was unsuitable to give predictions for the final
distribution.

In a previous recent work of the present author, the continuous
time discrete state stochastic kinetic approach was used to study
a particular very simple chiral autocatalytic model with first-
order autocatalysis.29 It was clearly shown that the method can
be used to calculate theoretical final distributions, and an
example was given where efficient first-order autocatalysis led
to total asymmetric synthesis.

In the present paper, a detailed stochastic kinetic analysis of
several different classes of chiral autocatalytic models are carried
out and the theoretical distributions obtained are compared with
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experimental observations. Emphasis is also given to finding
methods to decide whether a set of experimental results indeed
shows the inherently stochastic nature of chiral autocatalysis
or simply exhibits irreproducibility because of an uncontrolled
external factor. Only the results are given in the text of the paper,
the mathematical proofs are deposited in the Supporting
Information.

Results and Discussion

Stochastic Approach to Chemical Kinetics.The usual
deterministic approach to chemical kinetics is based on using
continuous concentration-time functions. Despite being in
obvious contrast with the particle-based, noncontinuous view
of matter, this approach is satisfactory for the overwhelming
majority of problems because the number particles is large.
Under certain conditions, especially when the number of
particles is low, the deterministic approach to kinetics is
insufficient. Several different mathematical approaches have
been developed under the name of stochastic kinetics.30 The
continuous time discrete state (CDS) stochastic approach is
probably closest to the accepted particle-based view of matter.
The mathematics of this approach has been developed in detail30

and only a very brief summary is given here.
In the CDS approach, a state of the system at a given time

instance is identified by giving the numbers of each particle
present. A differential equation for the probability distribution
function of every state is set based on the kinetic scheme. These
differential equations are linear and can in principle be solved
analytically, but this is often extremely difficult to handle
because the number of possible states and differential equations
is too large. It should be noted that the CDS approach is superior
to the usual deterministic approach in a sense that it incorporates
the particulate nature of matter without making any assumptions
not present in the deterministic approach.30 In theory, every
conclusion drawn with the deterministic approach can be reached
as a limiting case of the CDS approach for very high particle
numbers. It is in fact surprising that the CDS approach has not
been used extensively to interpret chiral autocatalysis, especially
because the use of an early, but mathematically sound, version
of this approach for autocatalytic reactions was reported by
Delbrück as early as 1940.31 Other applications of stochastic
kinetics have been developed;32-39 e.g., it was used to interpret
single-enzyme catalysis.34,38

General Model of Homogeneous Chiral Autocatalysis.In
this paper, a general chemical model is studied in which the
nonchiral precursor molecule A is transformed to a chiral
product B, usually using some sort of reagent(s) and/or catalyst-
(s). The enantiomers of B are BR and BS. Homogeneous chiral
autocatalysis is represented by two parallel reactions and rate
expressions:

In these equations,a denotes the number of A molecules,r the
number of BR molecules, ands the number of BS molecules
present. The two mathematical equations are rate expressions
that give the “stochastic rate of reaction” for a given set of initial
concentrations, or molecule numbers. In the rate expressions,
functiong(a) represents the uncatalytic pathway and it is only

dependent ona. It should be noted that eqs 1 and 2 are also
valid if the rate actually depends on additional reagents and
catalysts because functionsg andh only give the rate in a single
kinetic run and may be different for different initial conditions,
especially for different initial concentration(s) of reagent(s) and/
or catalyst(s).30 In this sense, eqs 1 and 2 are rather different
from the usual deterministic rate equations of chemical kinetics.
It should be noted that the model used in the only previous
work using CDS approach to chiral autocatalysis was the
simplest special case of this model withg(a) ) κua and
h(a,r) ) κcar.29

Initially ( t ) 0), the number of A molecules present isn, the
number of BR and BS molecules present is 0. Conservation of
mass ensures that giving only the number of BR and BS

molecules is sufficient to identify any possible state of the
system unambiguously: (r,s) will denote a state where the
number BR molecules is exactlyr, the number of BS molecules
is exactlys, and consequently, the number of A molecules is
exactlya ) n - r - s. Later, the total number of B molecules,
b ) r + s ) n - a, will also be used. LetP(r,s,t) denote the
probability that state (r,s) occurs at a certain time instantt. From
the rate expressions given in eqs 1-2 the (Kolmogorov-like)
differential equations for the time dependence ofP(r,s,t) can
be written

For r ) 0 or s ) 0, the second or third additive term on the
right should be deleted, respectively. The initial state (0,0) is
certain att ) 0; therefore,P(0,0,0)) 1, andP(r,s,0) ) 0 holds
for every other state. In agreement with the general remarks
about the CDS approach, eq 3 describes a set of 0.5× (n + 1)
× (n + 2) linear differential equations.

Final Distribution. The distribution of BR and BS molecules
in the final state (i.e., wherer + s ) n) is probably the most
important feature of a chiral autocatalytic system and can be
calculated without determining everyP(r,s,t) function. LetQ(r,s)
denote the probability that the system goes through state (r,s)
at any time during the process.Q(0,0) ) 1 holds because (0,0)
is the certain initial state. It can be shown thatQ is related to
P through the following equation:

After defining ú(i,j) ) h(i,j)/g(i), a recursive equation can be
given for Q(r,s):

This recursive definition shows that the final distribution only
depends on the functionú(i,j) and makes it possible to compute
the values ofQ for relatively low values ofr ands. Q(r,s) )
Q(s,r) also follows from eq 5; therefore the final distribution
must be symmetric. In the next sections, considerations will be
presented for a few particular forms ofú(i,j).

First-Order Autocatalysis. The term first-order chiral
autocatalysis is used here in a rather general sense, meaning
that the ratio of the catalytic and noncatalytic rates is directly
proportional to the number of product molecules, i.e.,ú(i,j) )

A f BR

V1 ) 0.5g(a) + h(a,r) (1)

A f BS

V2 ) 0.5g(a) + h(a,s) (2)

dP(r,s,t)
dt

) -{g(a) + h(a,r) + h(a,s)}P(r,s,t) +

{0.5g(a+1) + h(a+1,r-1)} P(r-1,s,t) +
{0.5g(a+1) + h(a+1,s-1)} P(r,s-1,t) (3)

Q(r,s) ) lim
tf∞

P(r,s,t) + ∫0

∞
{g(a) + h(a,r) +

h(a,s)} P(r,s,t) dt (4)

Q(r,s) ) Q(r-1,s)
0.5+ ú(a+1,r-1)

1 + ú(a+1,r-1) + ú(a+1,s)
+

Q(r,s-1)
0.5+ ú(a+1,s-1)

1 + ú(a+1,r) + ú(a+1,s-1)
(5)
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h(i,j)/g(i) ) Rj irrespective of the value ofi. In this case, the
recursive definition given in eq 8 reduces to a simple form

This is the same recursive definition as derived from the very
simple CDS model where the specific functionsg(a) ) κua and
h(a,r) ) κcar were used.29 Mathematical induction can be used
to prove that the explicit form for the values ofQ is

A continuous probability function (f) can also be obtained for
very large values ofn using the molar fraction of BR in the
final mixture (xr ) r/n).

whereΓ is the gamma function. The derivation presented here
clearly shows that this final distribution is valid for every case
involving first-order autocatalysis irrespective of the actual
kinetic scheme. In other words, the statistical distribution shown
in eq 8 is general for first-order autocatalysis. The convergence
to the continuous distribution is quite fast and eq 8 can be used
for n > 1000 unlessR is so low that no experimentally
detectable enantiomeric excess forms.

Higher-Order Autocatalysis. Higher-order autocatalysis can
be represented generally byú(i,j) ) h(i,j)/g(i) ) âjê. Obviously,
ê ) 1 is the special case of first-order autocatalysis already
dealt with,ê > 1 is higher-order autocatalysis, andê ) 2 is
second-order autocatalysis. The recursive definition is not easily
transformed to an explicit form for higher-order autocatalysis,
but the probability of getting one enantiomer only is easily
given:

For ê > 1, it can be shown that

It follows that the final distribution for higher order autocatalysis
and very large initial numbers of A is one where one of the
enantiomers is in overwhelming excess over the other. This is
in agreement with the prediction of the deterministic approach
that higher-order autocatalysis amplifies a small initial enan-
tiomeric excess.6-7,22 However, it would be premature to
conclude that higher-order autocatalysis necessarily leads to the
formation enantiomeric excesses close to 100% because the

convergence to the unique final distribution, unlike for first-
order autocatalysis, may not be very fast. Practically meaningful
values ofâ andn could lead to cases when the distribution does
not approach this final limit and numerical calculations are
necessary. This is not easy because no explicit formula could
be given forQ(r,s). A method for the numerical calculation of
the cumulative distribution function will be given here. First,
the appropriate values ofQ(r,s) are calculated for a relatively
small value of b0, e.g., 1000 or 10 000 using eq 5. The
cumulative distribution function is calculated for this smallb0:

Using the molar fraction at this point,xr,i ) i/b0, the expectation
for the final molar fraction is calculated using the following
differential equation:

For every initial value ofxr,i, numerical integration of eq 12
between the limitsb0 and n gives a final value for the molar
fraction,xxr,i. The final distribution is given byF(xxr,i). It should
be noted that this method of calculation is essentially equivalent
to a mixed stochastic-deterministic approach,30 where stochastic
equations are used for low numbers of product molecules smaller
thanb0, whereas the deterministic approach is used for product
numbers higher thanb0.

Time Dependence and Transient Probabilities.In addition
to the random distribution of enantiomers, chiral autocatalytic
systems should show a number of further stochastic phenomena
because of the autocatalytic nature of the reaction. As shown
by the mathematical analysis of nonchiral autocatalysis,31,32these
stochastic phenomena include random fluctuations in the
reaction time and depend on the overall volume. To study these
effects, the calculation of theP(r,s,t) transient probabilities is
necessary. Mathematical treatment is only given here for the
relatively simple case of first-order catalysis. First, it is assumed
P(r,s,t) is related toQ(r,s) by P(r,s,t) ) Q(r,s) R(a,t). Because
Q(r,s) is independent of time, eq 3 takes the following form:

For first-order autocatalysis,h(a,r) ) Rrg(a) and similarly,h(a,s)
) Rsg(a). Combining this with eqs 6 and 13 gives

Equation 14 is exactly the CDS stochastic description of the
autocatalytic reaction Af B without considering the enanti-
omers of B. This shows that the “chiral” and the “autocatalytic”
part of the model can be separated for first-order chiral
autocatalysis. The same is not generally true for higher-order
autocatalysis.

Comparison with Experimental Data. As experimental
examples are known for absolute asymmetric synthesis,10,12-13

it is quite natural to ask how well the models considered in this
paper interpret the actual findings. A major question arises
before any comparison can be made: the CDS models show

Q(r,s) ) Q(r-1,s)
0.5+ R(r-1)

1 + R(b-1)
+ Q(r,s-1)

0.5+ R(s-1)

1 + R(b-1)
(6)

Q(r,s) ) (br )
∏
j)0

r-1

(0.5+ Rj)∏
j)0

s-1

(0.5+ Rj)

∏
j)0

r+s-1

(1 + Rj)

(7)

f(xr) ) lim
nf∞,xr)r/n

nQ(r,s) )

Γ(1R)
Γ( 1

2R) Γ( 1
2R)

xr
(1/2R)-1(1 - xr)

(1/2R)-1 (8)

Q(r,0) )

∏
j)0

r-1

(0.5+ âjê)

∏
j)0

r-1

(1 + âjê)

(9)

f(0) ) f(1) ) lim
kf∞

kQ(k,0) ) lim
kf∞

kQ(0,k) ) ∞ (10)

F( r

b0
) ) ∑

i)0

r

Q(i,b0-i) (11)

dxr

db
)

0.5+ ú(n-b,r)

[1 + ú(n-b,r) + ú(n-b,b-r)](b + 1)
-

xr

b + 1
(12)

Q(r,s)
dR(a,t)

dt
) -{g(a) + h(a,r) + h(a,s)}Q(r,s) R(a,t) +

{0.5g(a+1) + h(a+1,r-1)}Q(r-1,s) R(a+1,t) +
{0.5g(a+1) + h(a+1,s-1)}Q(r,s-1) R(a+1,t) (13)

dR(a,t)
dt

) -g(a){1 + R(n-a)}R(a,t) +

g(a+1){1 + R(n-a-1)} R(a+1,t) (14)
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that some variables in chiral autocatalytic reactions should show
rather substantial random variations because of the inherent
stochastic nature of the process. However, such random varia-
tions in the results of experiments are routinely attributed to
irreproducibility caused by important but uncontrolled external
factors. Therefore, a method should be developed to differentiate
between random fluctuations arising from the inherent stochastic
nature of a process and irreproducibility. Specifically, for chiral
autocatalysis, there are at least four criteria the experimental
results can be tested against:

1. The chiral autocatalytic nature of the reaction should be
demonstrated by experiments where one of the pure enantiomers
of the product is deliberately added before the reaction. These
experiments should show shorter reaction times and increased
excess of the enantiomer used for induction.

2. The experiment without any chiral inductor should be
repeated several (preferably>50) times to show that the
enantiomeric excesses are formed in a random fashion. The
distribution obtained in these measurements should be sym-
metric. It has been suggested that very low levels of uncontrolled
chiral (e.g., bacterial) contaminants may cause the formation
of seemingly random enantiomeric excesses.12,27However, when
a symmetric final distribution is obtained experimentally, this
explanation can be ruled out practically. Wilcoxon’s rank sum
test40 can be used to decide whether the distribution is symmetric
or not: the molar fractionsxr andxs ()1 - xr) must have the
same statistical distributions for a symmetric case.

3. Random fluctuations should be seen in the kinetics of the
reaction.

4. The distribution of final molar fractions and reaction times
should be dependent on the overall volume even if the very
same initial concentrations are used. As pointed out earlier,29

the value ofR in first-order autocatalysis depends on the volume
and so doesâ for higher-order autocatalysis.

In the remaining part of this paper, the assumed experimental
examples will be tested on the basis of these criteria.

The first example10 is the preparation of a chiral cobalt(III)
complex,cis-[CoBr(NH3)(en)2]2+ from the reaction of trinuclear
mixed valence [Co(H2O)2{(OH)2Co(en)2}2]4+ with NH4Br in
aqueous solution (n ) 6.0 × 1020, 20 experiments). The
measurements gave the cumulative distribution shown by the
markers in Figure 1. Wilcoxon’s rank sum test40 showed that
the distribution is indeed symmetric (see Supporting Informa-
tion). Both first-order (R ) 0.0060, dashed line) and second-
order autocatalysis (â ) 5.5 × 10-24, dotted line) gave an
excellent fit to the experimental points. Actually, the experi-

mental distribution and the two fitted theoretical curves are very
close to a normal distribution (σ ) 0.052, solid line in Figure
1). This can be rationalized by noting that the enantiomeric
excesses measured in this reaction are rather small and the
distribution is narrowly centered around the racemic mixture.
Thus, it does not seem to be unreasonable to find that these
small fluctuations adhere to normal distribution.

The second known example is more interesting because larger
enantiomeric excesses were formed. The chemical reaction is
the formation of a chiral pyrimidyl alkanol in the reaction
between pyrimidine-5-carbaldehyde and diisopropylzinc.12,13

Random generation of optical activity was reported in this
reaction by two different publications12,13 In the first work,12

the final distribution was obviously not symmetric and the
authors concluded that low levels of some uncontrolled chiral
impurity (most probably from the solvent) interfered with the
measurements. The second set of data13 gave a symmetric
distribution (n ) 3.0 × 1020, 37 experiments) as evidenced in
this work (see Supporting Information) by Wilcoxon’s rank sum
test.40 The markers in Figure 2 show the measured cumulative
distribution, the solid line shows the best fit to a distribution
calculated assuming second-order autocatalysis (â ) 3.8 ×
10-22), the dotted line represents the best fit to first-order
autocatalysis (R ) 1.16). Graphically, second-order autocatalysis
gives a slightly better fit. The goodness of fit was further studied
by statistical tests. The Kolmogorov-Smirnov test40 showed
that both fits are acceptable at the 95% confidence level (see
Supporting Information). Using theø2 test40 for the same purpose
was probably more informative. In the present example, discrete
experimental points and a continuous distribution are compared
and it is necessary to form classes containing at least 10
experimental points. A maximum of 3 such classes can be
formed from the 37 data points measured, but the formation of
classes is rather arbitrary. To avoid this arbitrary classification,
the test was performed with several different sets of classes.
Only 2 classes were formed in each case, the first containing
every point for whichxr is smaller than a predeterminedxlim

value, the second containing all the rest of the points. The values
of ø2 are then calculated for a range of meaningfulxlim values.
Test results are shown in Figure 3 for first-order and second-
order autocatalysis. The criticalø2 values for this problem are
2.71, 3.84, and 5.02 at 90, 95, and 97.5% confidence levels. It
is seen that first-order autocatalysis is rejected at 90 and 95%
confidence levels ifxlim is close 0.22. In contrast, second-order
autocatalysis is never rejected. This again shows that second-
order autocatalysis fits the experimental points slightly better.

Unfortunately, no direct kinetic data have been published for
the two asymmetric reactions10,12-13 that could be compared

Figure 1. Experimental and fitted cumulative distribution functions
for the random generation of enantiomers in the reaction producing
[CoBr(NH3)(en)2]2+. Solid line: normal distribution. Dashed line: first-
order autocatalysis. Dotted line: second-order autocatalysis. As ex-
plained in the text, the three lines are very close to each other.

Figure 2. Experimental and fitted cumulative distribution functions
for the random generation of enantiomers in the reaction producing
the chiral pyrimidyl alkanol. Solid line: second-order autocatalysis.
Dotted line: first-order autocatalysis.
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with CDS predictions. However, the stochastic phenomena listed
in criteria 3 and 4 arise from the autocatalytic nature of the
process and for first-order autocatalysis they are independent
of the chiral properties of the system. Stochastic phenomena in
autocatalytic systems are known in nonchiral reactions, the most
well studied example being the “crazy clock reaction” explored
in detail by Nagypa´l and Epstein,41 which is basically the redox
reaction between chlorite ion and iodide ion. The process is
characterized by the sudden appearance of the product iodine
after a period referred to as the reaction time. The reaction times
change in a random fashion within certain limits. The distri-
bution of reaction times was influenced by the initial concentra-
tions, overall volume, and stirring rate. The CDS models of
autocatalysis mentioned here cannot interpret the dependence
on stirring rate quantitatively without additional assumptions
about spatial inhomogeneity. However, it should be noted that
the same distribution was obtained at the two highest stirring
rates suggesting that a region is reached where the distribution
does not depend on the stirring rate any more. The distribution
of reaction times obtained in a series of experiments at the
highest stirring rate can be interpreted with CDS approach
(Figure 4). The solid line is a theoretical distribution of reaction
times calculated using eq 14 withg(a) ) κua. Although the
actual mechanism of this clock reaction is much more compli-
cated,41 this simplistic model still gives some sort of basic
interpretation of the stochastic phenomena observed in the
system. The crazy clock reaction is important from a qualitative
point as well: it clearly confirmed that the distribution of
reaction times is influenced by the overall volume in agreement

with criterion 4. Similar stochastic phenomena were also
observed in the kinetics of the chlorite ion-thiosulfate ion
system.42

Conclusion

This paper proves that the stochastic kinetic approach, and
the CDS in particular, are suitable to interpret many aspects of
chiral autocatalysis and also provide a method to differentiate
between inherently stochastic phenomena and irreproducibility
because of insufficient control of external factors. It is possible
that researchers have actually encountered many more reactions
with total asymmetric synthesis than the two reported in the
literature, but the stochastic nature of the processes was mistaken
for irreproducibility. These two known examples of total
asymmetric synthesis seem to be far away from the biologically
important chiral molecules. It would be rather interesting to find
reactions in which amino acids or carbohydrates are prepared
in a chiral autocatalytic fashion. In fact, an example is already
known where amino acid complexes of a metal ion are
asymmetric catalysts in the formation of amino acids,43 although
this falls short of chiral autocatalysis.

Acknowledgment. I thank an anonymous reviewer for
calling my attention to the conceptual difference between the
two types of interpretations mentioned in the Introduction.
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(24) Todorović, D.; Gutman, I.; Radulovic´, M. Chem. Phys. Lett.2003,

372, 464-468.

Figure 3. Results of theø2 test for the random generation of
enantiomers in the reaction producing the chiral pyrimidyl alkanol.
Large diamonds: second-order autocatalysis. Small squares: first-order
autocatalysis.

Figure 4. Experimental and fitted cumulative distribution functions
for the reaction time in the crazy-clock (chlorite ion-iodide ion)
reaction. Markers: measured points. Solid line: fitted distribution based
on a first-order autocatalytic model.

11062 J. Phys. Chem. A, Vol. 109, No. 48, 2005 Lente



(25) Gridnev, I. D.; Serafimov, J. N.; Quiney, H.; Brown, J. M.Org.
Biomol. Chem.2003, 1, 3811-3819.

(26) Plasson, R.; Bersini, H.; Commeyras, A.Proc. Natl. Acad. Sci.
U.S.A.2004, 101, 16733-16738.
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